

PAMSSTUDY DSE BIOLOGY

2023 EDITION

Content Page

1	Molecules of Life	1
2	Cellular Organization	11
3	Movement of Substance across Membrane	27
4	Enzyme	40
5	Cell Division	54
6	Inheritance	67
7	Molecular Genetics	83
8	Evolution	96
9	Biodiversity	107
10	Ecosystem	119
11	Photosynthesis	143
12	Respiration	161
13	Nutrition in Plant	171
14	Nutrition in Human	180
15	Gas Exchange in plants	208
16	Gas Exchange in Human	212
17	Transport in Plants	224
18	Transport in Human	240
19	Body Defence	255
20	Health & Diseases	268
21	Support in Plants	278
22	Movement in Humans	281
23	Phototropism	291
24	Detection	300
25	Nervous Coordination	316
26	Hormonal Coordination	332
27	Homeostasis	334
28	Reproduction in Flowering Plants	339
29	Reproduction in human	352
30	Growth and Development	369

Ch.1 Molecules of Life

1

(A) Carbohydrates

- Component: C, H, O (H:O ~ 2:1)
- General Formula: C x (H₂O) y
- Release energy when broken down to carbon & H_2O during glycolysis

	Monosaccharides	Disaccharides	Polysaccharides	
Chemical formula	C ₆ H ₁₂ O ₆	C ₁₂ H ₂₂ O ₁₁	(C ₆ H ₁₀ O ₅) _n	
Form	Simplest form of carbohydrates	condensation between two monosaccharides (H2O will be formed)	polymerization of monosaccharides	
Reducing sugar	Reducing sugar Reducing Reducing sugar exc sucrose		Not reducing	
Taste	Sweet	Sweet	Not sweet	
Solubility in water	Soluble	Soluble	Insoluble	
Examples	 1) Glucose 2) Fructose 3) Galactose 	 glucose + glucose → maltose glucose + fructose → sucrose glucose + galactose → lactose 	 Starch Glycogen Cellulose 	
Functions	 Transport form of carbohydrates in organisms As substrate to release energy during respiration in cell 	 storage in plant cell (sucrose) transport in phloem (sucrose) converted into respiratory substrate 	 Starch: major storage in plant Glycogen: major storage form in animal in liver, muscle Cellulose: major component of cell wall 	

3) Building up of	
complex	
carbohydrates	

Experiment

<u>1. Benedict's Test for reducing sugar</u>

- Add equal volume of Benedict's solution and substance to be tested in the test tube.
- Mix and shake the test tube gently.
- Heat it in a boiling water bath for 5 mins.

✓ reducing:	give brick-red precipitate	
X non-reducing:	remains blue	

2. Clinistix test for glucose

• Dip the clinistix paper into the solution to be tested.

✓ glucose:	turns to purple/ blue	
X glucose:	remains pink	

3. Diastix test for glucose

✓ glucose:	turns to brown
X glucose:	remains green

4. lodine test for starch

• Add a few drops of iodine solution.

✓ starch:	turns to blue-black
X starch:	remains yellowish orange

(16/3) In which of the following pairs of carbohydrates can Benedict's test be used to

distinguish the two carbohydrates from one another?

(1) sucrose and starch

(2) sucrose and maltose

- (3) glucose and maltose
- (4) glucose and starch

B. Setting up tube Q to show that enzyme X alone cannot give positive result in Benedict's test

C. Setting up tube S to show that enzyme X is denatured after boiling

D. Setting up water bath to simulate the temperature of the human body

Ans: C

(B) Lipids

- Component: C, H, O (with very little O)
- Solubility:
 - Insoluble in water (hydrophobic)
 - o Soluble in organic solvent (lipophilic), e.g., ether, chloroform

Functions

- 1. For storage due to its insolubility and high energy yield
- 2. Energy source: when oxidized, it generates large amount of energy
- 3. Insulating layer to reduce heat loss (fat under skin)
- 4. Water-proof layer to prevent water loss (waxy cuticle)
- 5. Protection: around organs to absorb shock
- 6. Structural component of cell membrane
- 7. Dissolve lipid-soluble vitamins (i.e. A, D)

		Triglycerides		Phospholipids		Cholesterol
	•	condensation	•	condensation between		
		between glycerol		phosphate group,		
		molecules and 3 fatty		glycerol, and 2 fatty		
Structure		acids (to give $3 H_2O$)		acids by ester bond		/
	•	Linked by ester bond	•	Amphipathic:		
				hydrophobic tail,		
				hydrophilic head		
Functions	•	Storage form of	•	major component of	•	Formation of
		energy		cell membrane		bile salt, vitamin